Tchebychev filter with a bandwidth of 20
Mec/s centered upon 6.900 Ge/s. The ground
plane spacing b was chosen to be 0.5 inch,
which resulted in a finger diameter d of
0.199 inch, and the spacing x was chosen
to be 0.125 inch. From Fig. 2, the fringing
capacitance (C;) was found to be 0.132 pF,
and from (2) the “parallel plate” capacitance
(Cp) was 0.055 pF, giving a total end capaci-
tance (C;) of 0.187 pF.

By rearranging (1),

¢ 1
] = — tan™?! (——-—— 3
wo wZoCy
and, hence, the finger length could be calcu-
lated. The measured center frequency of
this filter was found to be 6896 Gc/s,
whereas scaling from the design adopted by
Matthaei' and Cristal?> resulted in a filter
having a center frequency of 7.00 Ge¢/s. A
number of existing filters in the frequency
range 500 Mc/s to 7 Ge/s have been
analyzed by graphically solving (1), which
is a transcendental equation in w, for each
mechanical structure. The center frequen-
cies calculated by this method would have
reduced the discrepancies between design
and measurement by at least 70 percent in
all cases. As an example, the filter quoted by
Cristal> had a design center frequency of
1.500 Gc/s. By applying the above pro-
cedure, a center frequency of 1.543 Gc/s
would be predicted, which is in close agree-
ment with the measured center frequency

1.557 Ge/s.

It is interesting to note that to obtain a
particular resonant frequency for a given
end plate sepatation, the length of each
finger in a filter is a function of the diameter.
Since the fingers in the center of these filters
are often of equal diameter, they will all
have the same resonant frequency. How-
ever, the fingers at the ends of the filter are
usually of different diameters, and ideally
the finger lengths should be adjusted ac-
cordingly. This adjustment is not usually
made and provides an alternative explana-
tion of the slight adjustments in coupling
(and effectively Z;) which always seem to be
necessary between the end elements.

In conclusion, it is felt that, whereas a
more rigorous analysis of these disconti-
nuities would undoubtedly lead to even
closer agreement, the above procedure
should prove useful in reducing consider-
ably the gap between the design and mea-
sured center frequencies of interdigital filters.

B. F. NICHOLSON
The Marconi Company Ltd.
Chelmsford, Essex, England

Application of the Point-Matching
Method in Waveguide Problems
The determination of cutoff frequencies

of waveguides with arbitrary cross section
by the point-matching technique was re-
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cently studied by Yee and Audeh [1], [2].

It is interesting to point out that the
point-matching technique or collocation
method is a well-known and popular pro-
cedure in several areas of applied mechan-
ics. It has been used in boundary value and
eigenvalue problems [3]-[11]. The problem
treated by Baltrukonis [9] is governed by
the same differential system which governs
the propagation of electromagnetic waves in
hollow-piped waveguides. Baltrukonis [9]
deals with a star-shaped boundary given by
the equation

S, 0) =r — (a+ bcosdg) = 0.

The circle is one curve of the family. The
first four eigenvalues were calculated and
plotted in function of the dimensionless
parameter b/a. When b/a approaches zero
the boundary is circular, for which the exact
solution is known. This study shows that,
for the problem under consideration, the
calculated eigenvalues depend rather dras-
tically on the distribution of points. Further-
more, little or no convergence is demon-
strated for as many as seven collocation
points taken within an octant of the
boundary.

Jain [10] has introduced a new criteria
for the collocation procedure. In this pro-
cedure one requires that the error at ad-
jacent matching points be equal in magni-
tude but opposite in sign. Furthermore, the
error at the matching points must be larger
than that at any other point. This technique
seems to vield better results than the
straight collocation method [11].

One of the main advantages of the point
matching is its simplicity. Oua the other
hand, it should be emphasized that many
uncertainties exist regarding accuracy of the
results when the method is applied to new
problems,

Indication of convergence can usually be
obtained by using conformal mapping along
with various approximation techniques [12]~
[1:]. One of the main advantages of using
conformal mapping is that some bounding
techniques can geuerally be used once the
boundary conditions are identically satisfied
[13]-{15]. It was shown [14] that the use of
conformal mapping and Galerkin's Method
leads to excellent results.

In summary, it is the opinion of the
author that additional study of all these ap-
proximate techniques from a unified point of
view is needed.

P. A. Laura
Dept. of Mechanical Engrg.
Catholic University of America

Washington, D. C.
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Resonances of a Cylindrical Cavity
in a Lossy Compressible Plasma

Wait [1] has derived equations describ-
ing the resonances of a cylindrical cavity in
an isotropic, lossy compressible plasma.
The purpose of this communication is to
consider low-frequency resonances when the
effects of losses and compressibility are
small.

Consider a cylindrical cavity which is a
free space region immersed in an isotropic
compressible lossy plasma. The plasma has
permeability equal to the free space value
uo and permittivity e where

€ wn?

€ 1+ v + iw)iw ®
In (1), eo is the permittivity of free space, wy
is the angular plasma frequency of the elec-
trons, and » is the electron collision fre-
quency. The fields have the time factor
e*t, where w is the angular frequency and ¢
is the time. Let [1]

A (o B

u? iw/ €

where z is the speed of electron acoustic
waves in the plasma.

Suppose that the dimensions of the
cavity are small compared with the electro-
magnetic wavelength both in free space and
in the plasma. That is,
|7'ea 1 <1, where 7= —w?u¢eq, 7&= —wnge,
and ¢ is the radius of the cavity. Then the
resonance condition is [1]

Ei+(1—a,.)=0 )
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where §, is defined by equation (65) of Wait
[1]. It is easily found that for |ra|<1:

inwn? 1 Ku(rpa)
w(y +iw) o K ()

In (4), » is an integer, K, is a modified
Bessel function, and a dash denotes dif-
ferentiation with respect to the argument.
Equations (3) and (4) describe the low-
frequency resonances of the cylindrical
cavity. They may be compared with cor-
responding expressions which have been
derived for a spherical cavity [2].

For an incompressible plasma # =0. Then
T, i1s infinite and §,=0. In this case, the
resonance condition (3) becomes e/e¢g= —1
[1], [3]- Budden [3] has considered the low-
frequency resonances of a cylindrical cavity
in an incompressible anisotropic loss-free
plasma. The effect of losses in this situation
has also been considered [4].

For [z{>>1 and |z|>|»|, the modified
Bessel function K, (z) of complex order » and
complex argument z satisfies

K, (2) ~ (x/22)1% 2, —7 <argz <x/2 (5)
[5], so that K,/ (z)/K,(z)~—1. Hence, for

[7pa|>1 and [7a]>3>|n], using (2) and (1),
(4) becomes

Op =

@

new 2 2 7 —1/2
5”¢_2__Lﬁ|: _er_ - (6
w2y + iw) a w? 2]
This is applicable when the dimensions of
the cavity are much greater than the wave-
length of the electron acoustic waves in the
plasma.

A low-frequency resonance when the
plasma is incompressible and loss-free will
satisfy (3) with 8,=0 and »=0. The only
such frequency is wy/2!/2 [3]. Thus, for a
given electron density, there is only a single
resonant frequency, and this frequency is
independent of the radius of the cavity. This
result may be compared to that for a spheri-
cal cavity in an incompressible and loss-free
plasma, for which there is an infinite number
of resonances [2], [3].

When »/w is small and |r,a] is large, the
effects of losses and compressibility will be
small. The resonant frequencies can then be
regarded as having been slightly perturbed
from that in the incompressible loss-free
case.

Let (wn/2!1%) 40, where | Q] wy /2172, be
a (complex) resonant frequency when the
effects of losses and compressibility are
small. When »/w<1, (1) becomes

e e SRR @

Neglecting the product wr in (6) gives

WJJNZ % OJNQ -1/2

1—— . 8

2

O =

iw® @ @

Hence, the resonance condition (3) can be
written

+ o ©

where §, is given by (8). Replacing  in the
right-hand side of this expression by its
unperturbed resonant value wy/2!/2, and
using the condition || <wx/2!/2 in the left-
hand side, gives
v nu
o=—_"".
2 2a

(10)

Hence, in a shock-excited resonance of the
cavity the fields vary with time as

Loy m v

exp l:z (2112 Za) t:l exp ( g t) . (11
Thus, the time constant with which the
fields decay depends only on the electron
collision frequency; it is independent of the
compressibility and the mode number #.
This time constant is the same as that found
for a spherical cavity in an isotropic slightly

lossy, slightly compressible plasma [2].
The fields oscillate with a real frequency
which is independent of the losses. The effect
of a non-zero value of # is to split the un-
perturbed resonant frequency wx/2!/2 into a
series of resonant frequencies, each separated
from the next by the amount #/(2a). Of
course, for sufficiently large |#], the quan-
tity |n|#/(2a) will no longer be small com-
pared with wx/2!/2; then (11) will not be

applicable.

R. BurRMAN
Dept. of Physics
Victoria University of Wellington
Wellington, New Zealand
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Attenuation Constants of
Waveguides with General
Cross Sections

1. THEORY

The cutoff frequencies and the fileld con-
figurations of waveguides with general cross
section can be calculated approximately by
the point-matching method,! provided that
the method is applicable. With the field

. configurations of the ideal waveguide (with

perfectly conducting guide walls) known, it
is expected that the attenuation constant
due to the finite conductivity of the guide
walls may be estimated numerically.

Conventionally, the attenuation con-
stant is defined as

a= Py/2Pr )]

if the guide is made of good conducting ma-
terial, where Py, is the power loss per unit
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length. The power transfer Pp is given as?
Pr=(1/2) f Re[E, X B#-2]dS ()
s

where .S is the cross-sectional area of the
waveguide, Z is the unit vector in the propa-
gating direction, and (*) denotes the opera-
tion of taking the complex conjugate. The
transverse components of the field E; and H,
can be calculated from the longitudinal com-
ponent ¢ (¢ =H, for TE modes, ¢y=E, for
TM modes), which was obtained by the
point-matching method.! Substituting the
expressions of E; and H, in terms of ¢ into
(2), and after some manipulation, the power
transfer can be reduced to

PT=GfSI¢|2dS 3)

where
G = (1/2Z)(f/f)%¢ for TM modes
G = (Zo/2)(f/f)%  for TE modes

¢=vi— (/0

and Zy=+/mo/e’ is the intrinsic impedance
of free space. The quantities f; and f are the
cutoff and operating frequencies, respec-
tively.

The power loss per unit length of the
guide is conventionally estimated by

Pr= (R/2) 9ch Hun|?dl (1)

where R = +/wuo/ 20 is the surface resistance
of the guide wall and ¢ is the conductivity of
the conducting material. The path C of the
line integral is the contour of the cross sec-
tion. The integrand in (4) is the square of the
magnitude of the magnetic field component
tangential to the periphery of the ideal guide
walls. Since the normal component of the
transverse magnetic field H, automatically
vanishes at the guide surface, it is then possible
to express Hyn for TM wave modes as
follows:

] Hian |2 = lﬁto'c; 0) l2 (%)
where 7., a function of 8, describes the cross-
sectional contour. For TE wave modes,
however, the longitudinal component of the

magnetic field also contributes to the tan-
gential component. Hence,

| Hun |2 = | Hilre, 0) |2+ | ¥0e, 0) 2 (6)

The square of the magnitude of the trans-
verse magnetic field may be written as

| H. |2 = (f/f)?F(r, 6) for TM modes (7)

and
] H, |2 = (ft/fk22F(r,0) for TE modes (8)

where

oo = () + (53"

Combining (1) through (8) yields the

following attenuation constants:

= (RS/ZZofkﬁ fs ] |//]2dS) §0F(rc, 6)r.db (9)
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