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Tchebychev filter with a bandwidth of 20
Me/s centered upon 6.900 Gc/s. The ground
plane spacing b was chosen to be 0.5 inch,

which resulted in a finger diameter d of
0.199 inch, and the spacing x was chosen
to be 0.125 inch. From Fig. 2, the fringing

capacitance (C{) was found to be 0.132 pF,

and from (2) the “parallel plate” capacitance

(Cfl) was 0,055 pF, giving a total end capaci-

tance (C,) of 0.187 pF.
By rearranging (1),

1
1 = ~ tan–l

()
(3)

W(I qz!)c~

and, hence, the finger length could be calcu-
lated. The measured center frequency of
this filter was found to be 6896 Gc/s,

whereas scaling from the design adopted by
Matthaeil and Crista12 resulted in a filter
having a center frequency of 7.00 Gc/s. A

number of existing filters in the frequency
range 500 Me/s to 7 Gc/s have been

analyzed by graphically solving (1), which
is a transcendental equation in Q, for each
mechanical structure. The ceater frequen-

cies calculated by this method would have
reduced the discrepancies between design
and measurement by ut least 70 percent in
all cases. .1s an emmple, the filter quoted by
Crista12 had a design center frequency of
1.500 Gc/s. By applying the above pro-
cedure, a center frequency of 1.543 Gc/s

would be predicted, which is in close agree-
ment ~vith the measured center frequency
1.557 Gc/s.

It is interesting to note that to obtain a

particular resonant frequency for a given
end plate sepa~ ation, the length of each

finger in a filter is a function of the diameter.

Since the fingers in the center of these filters
are often of equal diameter, they will all
have the same resonant frequency. How-
ever, the fingers at the ends of the filter are
usually of different diameters, and ideally

the linger lengths should be adjusted ac-
cordingl~-. This adjustment is not usually
made and pro~.ides au alternative explana-

tion of the slight adjustments in coupling

(and effectively .ZO) which always seem to be

necessary between the end elements.
In conclusion, it is felt that, whereas a

more rigorous analysis of these disconti-

nuities would undoubtedly lead to even

closer agreement, the above procedure
should prove useful in reducing consider-

ably the gap between the design and mea-
sured center frequencies ~f interdigital filters.
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Application of the Point-Matching

Method in Waveguide Problems

The determination of cutoff frequencies
of waveguides with arbitrary cross section

by the point-matching technique was re-
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cently studied by Yee and Audeh [1], [2].

It is interesting to point out that the
point-matching technique or collocation
method is a well-known and popular pro-
cedure in several areas of applied mechan-
ics. It has been used in boundary value and

eigenvalue problems [3]–[11 ]. The problem

treated by Baltrukouis [9] is governed by
the same differential system which governs

the propagation of electromagnetic waves in

hollow-piped waveguides. Baltrukonis [9]

deals with a star-shaped boundary given by
the equation

S’(r,@)= Y–(a+bcos49)=0.

The circle is one curve of the family. The
tirst four eigenvalues were calculated and
plotted in function of the dimensionless
parameter b/a. IVhen b/a approaches zero
the boundary is circular, for which the exact
solution is known, This stud? shows that,

for the problem under consideration, the

calculated eigenvalues depend rather dras-

tically on the distribution of points. Further-
more, little or no convergence is demon-
strated for as many as seven collocation

points taken within an octant of the
boundary.

Jain [10] has introduced a new criteria
for the collocation procedure. In this pro-

cedure one requires that the error at ad-
jacent matching points be equal in magni-

tude but opposite in sign. Furthermore, the
error at the matching points must be larger

than that at any other point. This technique
seems to yield better results than the

straight collocation method [11 ].

One of the main ad~-antages of the point
matching is its simplicity. On the other

hand, it should be emphasized that many
uncertainties exist regarding accuracy of the
results when the method is applied to new

problems.
Indication of convergence can usually be

obtained by using conformal mapping along
with various approximation techniques [12]–
[1 J ]. One of the main advantages of using

couformal mapping is that some bounding
techniques can generally be used once the

boundary conditions m-e identically satisfied
[13]- [15 ]. It was shott,n [14] that the use of

conformal mapping and Galerkin’s Method

leads to excellent results.
In summary, it is the opinion of the

author that additional study of all these ap-
proximate techniques from a unified point of
vie~v is needed.
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Resonances of a Cylindrical Cavity

in a Lossy Compressible Plasmf~!

W7ait [1] has derived ec[uations describ-

ing the resonances of a cylindrical cavity in
an isotropic, Iossy compress~ble pla.ma.
The purpose of this communication is to
consider low-frequency resonances when the
effects of losses and compressibility are
small.

Consider a cylindrical cavity which is a

free space region immersecl in an isotropic
compressible Iossy plasma. The plasma has

permeability equal to the free space value

p~ and permittivity e where

E
— .1+ —+’-.

(v+ zbJ)2@
(1)

‘=0

In (1), ~ois the permittivity of free space, OJ.V
is the angular plasma frequent-y of the elec-

trons, and v is the electron collision fre-
quency. The fields have the time factor

eta’, where o is the angular frequent}- and t
is the time. Let [1]

where u is the speed of electron acoustic

waves in the plasma.
Suppose that the dimensions of the

cavity are small compared with the elec tro-
maguetic wavelength both i n free space and
in the plasma. l-hat is, ]ral <<1 and

I ~,a \ <<1, whet-e F= -co’pwo, ~j = -G,2PW,
and a is the radius of the cavity. Then the
resonance condition is [1]

:+(1–8”)=0 (3)
@

Manuscript received January 26, 1966.



252 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES MAY

where & is defined by equation (65) of Wait
[1]. It is easily found that for ] ~,a I <<1:

1 Kn(~pa)
& = –~’e.—. —– . (4)

a (v + w) rza A7n’(Tfla)

In (4), n is an integer, K. is a modified

Bessel function, and a dash denotes dif-
ferentiation with respect to the argument.

Equations (3) and (-l) describe the low-
frequency resonances of the cylindrical
cavity. They may be compared with cor-
responding expressions which have been

derived for a spherical cavity [2].
For an incompressible plasma u = O. Then

T? k infinite and & = O. In this case, the

resonance condition (3) becomes e/eo = — 1
[1], [3]. Budden [3] has considered the low-
frequency resonances of a cylindrical cavity

in an incompressible auisotropic loss-free
plasma. The effect of losses in this situation

has also been considered [-l ].
For IzI>>I and Izl >>l. ] , the modified

Bessel function KV (z) of complex order v and

complex argument z satisfies

K“(z) ~ (rr/22) 1A-2, —rr < argz < v/2 (5)

[5], so that KV’(Z)/Kv(z)N– 1. Hence, for

~~~e~~~e~d I r,a \ >> I s-z[, using (2) and (l),

?t6.VJ2

[ “1

–1/2

& = ~ 1–$–: (6)
COz(v+ i~) a a

This is applicable when the dimensions of
the cavity are much greater than the wave-
length of the electron acoustic waves in the
plasma.

A low-frequency resonance when the

plasma is incompressible and loss-free will

satisfy (3) with IS.= O and v = O. The only
such frequency is ctIiv/211z [3]. Thus, for a

given electron density, there is only a single
resonant frequency, and this frequencv is

independent of the radius of the cavity. This
result may be compared to that for a spheri-

cal cavity in an incompressible and loss-free
plasma, for which there is an infinite number
of resonances [2], [3].

When v/ti is small and I ~Pa I is large, the
effects of losses and compressibility will be
small. The resonant frequencies can then be
regarded as having been slightly perturbed
from that in the incompressible loss-free

case.
Let (@N/2112) +$2, where I Q I <<co,v/2112, be

a (complex) resonant frequency when the
effects “of losses and cornpre&ibility are

small. When v/cu<<l, (1) becomes

e
—+$.%. (7)
‘=0

Neglecting the product wv in (6) gives

f%= %3-%)-’” ‘8)
Hence, the resonance condition (3) can be

written

2–$=% + & (9)

where & is given by (8). Replacing o in the
right-hand side of this expression by its
unperturbed resonant value 0.VV/2~12, and
using the condition \ Q I <<@N/21@ in the Ief t-
hand side, gives

O=;–:. (lo)

Hence, in a shock-excited resonance of the

cavity the fields vary with time as

‘XTG-3’I “e++) ’11)
Thus, the time constant with which the

fields decay depends only on the electron

collision frequency; it is independent of the
compressibility and the mode number n.
This time constant is the same as that found
for a spherical cavity in an isotropic slightly

Iossy, slightly compressible plasma [2].
The fields oscillate with a real frequency

which is independent of the losses. The effect
of a non-zero value of u is to split the un-

perturbed resonant frequency @N/21 /z into a
series of resonant frequencies, each separated
from the next by the amount u/(2a). Of

course, for sufficiently large In\, the quan-
tity I n I ti/(2a) will no longer be small com-

pared with @.V/21/2; then (11) will not be
applicable.
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Attenuation Constants of

Waveguides with General

Cross Sections

1. THEORY

The cutoff frequencies and the fileld con-
figurations of waveguides with general cross
section can be calculated approximately by
the point-matching method,l provided that
the method is applicable. With the field
configurations of the ideal waveguide (with
perfectly conducting guide walls) known, it
is expected that the attenuation constant
due to the finite conductivity of the guide
walls may be estimated numerically.

Conventionally, the attenuation con-
stant is defined as

if the guide is made of good conducting ma-

terial, where PL is the power loss per unit
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length. The power transfer PT is given asz

Pr = (1/2) ~ Re [~, X 77,*.s] dS (2)
s

where S is the cross-sectional area of the

waveguide, 2 is the unit vector in the propa-
gating direction, and (*) denotes the opera-

tion of taking the complex conjugate. The
transverse components of the field Et and Ht
can be calculated from the longitudinal com-
ponent ~ (+= H. for TE modes, + =E, for
TM modes), which was obtained by the
point-matching method. ~ Substituting the

expressions of Et and Hi in terms of $ into
(2), and after some manipulation, the power

transfer can be reduced to

PT=GJIWS (3)
s

where

G = (1/2ZJ (j/fJ ‘f for TM modes

G = (2,/2) (~/j,)’~ for TE modes

r = dl – (.f./f)’

and ZO = vPO/eO’ is the intrinsic impedance

of free space. The quantities .f. and f are the

cutoff and operating frequencies, respec-

tively.
The power loss per unit length of the

guide is conventionally estimated by

J’L = (Rs/2) $ \ Ht.”12d2 (4,
c

where R, = v’Qpo/2u is the surface resistance
of the guide wall and u is the conductivity of
the conducting material. The path C of the
line integral is the contour of the cross sec-

tion. The integrand in (4) is the square of the
magnitude of the magnetic field component

tangential to the periphery of the ideal guide

walk. Since the nornml component of the
transverse tnagnetic jield H~ automatically
vanishes at the guide surface, it is then possible
to express lfi~n for TM wave modes as
follows:

\ H,.. l’ = l~,(r., @ l’ (5)

where r., a function of O, describes the cross-
sectional contour. For TE wave modes,
however, the longitudinal component of the

magnetic field also contributes to the tan-

gential component. Hence,

\ Hm ]’ = ] D,(r., 0) ]’ + \ ~(~,, @ l’. (6)

The square of the magnitude of the trans-
verse magnetic field may be written as

I B, 1’ = (~/j.) ’F(s’, 6) for TM modes

and

\ ~~ 1’ = (j~/j&2)’F(r, 0) for TE modes

where

Combining (1) through (8) yields
following attenuation constants:

(7)

(8)

the

~= (wwj- 141,ds)$F(r.,o,rcd, (9)
s c
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